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DRAG CHARACTERISTICS OF CIRCULAR CYLINDERS IN A LAMINAR

BOUNDARY LAYER AT SUPERSONIC FREE-STREAM VELOCITIES

By Robert L. Stallings, Jr., Milton Lamb, and Dorothy T. Howell

Langley Research Center

SUMMARY

An experimental investigation has been conducted to determine the drag character-

istics of circular cylinders attached to a flat-plate surface with their longitudinal axes of

symmetry perpendicular to the plate surface. The undisturbed flat-plate boundary layer

was laminar at the cylinder installation locations through the range of free-stream varia-

bles. The cylinders were alined in a row that was perpendicular to the free-stream

velocity vector. Spacing between cylinders was varied from a minimum value of approxi-

mately 3 cylinder diameters to an upper-limit value corresponding to an isolated-cylinder

installation.

The isolated-cylinder drag coefficient when plotted as a function of the ratio of

cylinder height to boundary-layer displacement thickness k/6 * was found to be invariant

with free-stream Mach number and cylinder scale. The magnitude of these experimental

values for a cylinder having a height-to-diameter ratio of approximately 2 was in good

agreement with results from an approximate theoretical calculation based on a hypothetical

cylinder pressure distribution described in the text.

For the row of cylinders, decreasing spacing between cylinders resulted in a reduc-

tion in the cylinder drag coefficients. For both the row of cylinders and the isolated

cylinders, increasing k/6* resulted in an increase in cylinder drag coefficients. If the

cylinder drag coefficients for the row of cylinders were normalized by values from the

isolated cylinders, however, this normalized parameter was found to be essentially

invariant with k/s* for k/8* Z 2.

Results obtained from impact-pressure survey through the undisturbed laminar

boundary layer on the center line of the flat-plate surface were in good agreement with the

theory of NASA TR R-368.

INTRODUCTION

The use of artificial roughness for establishing turbulent boundary layers on wind-

tunnel models has been an accepted practice by aerodynamicists for many years. This

practice has been applied to flows ranging from incompressible to hypersonic speeds. In
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general, increasing tunnel speed results in an increase in the size of roughness required
to trip the boundary layer effectively; for example, at subsonic speeds roughness heights
only a fraction of the boundary-layer thickness are required (ref. 1), whereas at hyper-
sonic speed roughness heights several times the boundary-layer thickness are required
(refs. 2 and 3).

Numerous investigations have also been conducted to define an optimum roughness
size and shape for effective boundary-layer tripping, that is, the smallest roughness shape
that willmove transition to the desired location. Results presented in references 3 and 4
indicate that a circular cylinder, with its longitudinal axis of symmetry perpendicular
to the test surface, is an effective tripping element and also the element for which wave
drag can be most readily defined. The results of references 3 and 4 were limited to the
hypersonic-speed region.

The purpose of the present investigation is to determine the drag of circular cylinders
partially or totally submerged in a laminar boundary layer through the higher supersonic-
speed region. Results from this investigation can be applied not only to roughness drag
on wind-tunnel models but also to cylindrical protuberances in a laminar boundary layer
on flight vehicles.

SYMBOLS

A frontal area of cylinder

CD drag coefficient

CDIC  drag coefficient of isolated cylinder

Cp pressure coefficient, p
qco

Cp,b base pressure coefficient

cf local skin-friction coefficient

k cylinder height

M Mach number

p static pressure
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Pt,2 pitot pressure

q dynamic pressure

R Reynolds number based on free-stream conditions and distance from plate

leading edge to cylinder installation location

r cylinder radius

S surface area

s spacing between cylinders

u local velocity component parallel to flat-plate model center line

V. free-stream velocity

w cylinder diameter

x, y, e model coordinates (see sketch Al)

Ycp value of y at center-of-pressure location on cylinder

a boundary-layer thickness

6* boundary-layer displacement thickness

7 ratio of specific heats (1.4 for air)

Subscripts:

t local conditions at outer edge of boundary layer

SL at stagnation line of cylinder

co free stream

TEST FACILITY

This investigation was conducted in the high Mach number test section of the Langley

Unitary Plan wind tunnel, which is a variable-pressure continuous-flow facility. The test

section is approximately 1.22 meters square and 2.13 meters long. The nozzle leading to

the test section is of the asymmetric sliding-block type, which permits a continuous
3



variation in test-section Mach number from 2.30 to 4.63. For this investigation the tun-
nel stagnation temperature was 339 K at M. = 2.30 and 2.90 and 353 K at M, = 3.95
and 4.60. A detailed description of the facility is given in reference 5.

MODELS AND TEST PROCEDURE

The flat-plate model used in this investigation is shown in figure 1. The flat surface
of the model was 36.58 cm in length, 25.40 cm in width, and had a 200 wedge leading edge.
The leading-edge thickness was approximately 0.008 cm.

Cylinder drag measurements and undisturbed boundary-layer skin-friction drag
measurements were obtained in separate runs using a skin-friction balance mounted in the
flat plate, its sensing element being flush with the flat surface of the plate. In order to
obtain the desired range of k/s and not exceed the maximum-force limitations of the
balance, it was desirable to locate the balance close to the leading edge but far enough
downstream to prevent contamination from the balance cover on the opposite side of the
plate feeding upstream through the boundary layer to the plate leading edge and possibly
influencing the measurements. Based on these considerations, the center of the balance
sensing element was located 10.16 cm from the leading.edge.

The geometry and spacing of the right circular cylinders used in the investigation are
shown in the table in figure 1(b). Cylinders of three different sizes were tested with the
spacing between the cylinders for a given size ranging from s/w = c (hereafter referred
to as the isolated cylinder) to the approximate values of s/w that are appropriate for
spacing of roughness elements used as boundary-layer trips. For the isolated-cylinder
tests, a single cylinder was cemented to the balance sensing element with its longitudinal
center line perpendicular to and at the center of the balance sensing element. When more
than one cylinder was tested (see sketch in fig. 1(b)), the cylinders were alined in a span-
wise row at right angles to the free-stream velocity vector with only one cylinder, the
center cylinder, being cemented to the sensing element. The remaining cylinders were
cemented to the flat surface beyond the sensing-element radius. To facilitate installation
of the multicylinder configurations and to insure the correct cylinder spacing and aline-
ment, templates were constructed and used for the cylinder installation. For the present
tests a very thin film of cement applied to the cylinder base was found to be adequate for
supporting the cylinders.

A cantilevered cylinder assembly used to determine the contribution from extraneous
forces resulting from skin-friction drag and pressure gradients associated with the cylinder
flow field on the sensing element is also shown in figure l(b). The cantilevered cylinder
was 0.127 cm in diameter, and its maximum height was 0.239 cm above the plate surface.
The base of the cylinder was separated from the balancing sensing element by a 0.013-cm
gap.
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Shown in figure 1(c) is the pitot-probe assembly that was used to obtain pitot-pressure

surveys across the boundary layer at the cylinder installation location on the flat-plate

center line. For these tests, the model was rolled to a vertical position so that the flat

test surface was parallel to the tunnel sidewall. The circular shaft of the pitot-probe

assembly passed through the tunnel-sidewall access door and was attached to a manually

operated traversing mechanism. The probe assembly was electrically insulated from the

tunnel sidewall and, therefore, contact between the probe head and the plate surface could

be determined by monitoring the electrical resistance between the two assemblies.

The procedure for obtaining the boundary-layer surveys consisted of first positioning

the probe head against the plate surface and obtaining the pressure measurements as the

probe was moved away from the plate surface. Since the measurements were always

obtained with the probe being moved away from the plate surface, any inaccuracies in the

probe location due to backlash in the traversing assembly are minimized.

INSTRUMENTATION AND ACCURACY

The impact-pressure measurements were obtained using a 69 kN/m 2 full-scale

absolute-pressure transducer. The accuracy of this gage combined with the read-out

equipment is one-half of 1 percent of full scale or ±345 N/m 2 . Free-stream stagnation

pressures less than 239 kN/m 2 were measured using a precision mercury manometer

with an accuracy of ±48 N/m 2 . Stagnation pressures greater than 239 kN/m 2 were

measured using a 1034 kN/m 2 full-scale absolute-pressure transducer having an accu-

racy of one-fourth of 1 percent of full scale or ±3 kN/m 2 .

The location of the impact probe relative to the flat-plate surface is accurate to

within ±0.005 cm.

The two skin-friction balances used in this investigation utilize the force-balance

principle in which the aerodynamic forces are counterbalanced by an electromagnetic

force (ref. 6). A balance having a full-scale range from 0 to 0.07 newton was used for

the cylinder drag measurements, whereas one having a range from 0 to 0.01 newton

was used for the clean-plate skin-friction drag measurements. The accuracy of both

balances was better than 1 percent of full scale.

Since the balances used in the present investigation are essentially moment-measuring

devices, the balance output is proportional to the location of the applied force relative to

the internal flexure point of the sensing element, which for the present balances was

located 0.792 cm beneath the sensing element. If the applied resultant force is not located

at the surface of the sensing element (as is the case when the balance is calibrated), a cor-

rection must be applied to the balance output to account for this discrepancy. For the case
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of the cylinder drag measurements the applied force acts through the center of pressure
on the cylinder, and therefore a correction must be applied to the balance output to account
for the extension of the moment arm from the sensing-element surface to the cylinder cen-
ter of pressure.

Based on a simplified hypothetical cylinder pressure distribution, equations are
derived in appendix A for defining the variation of ycp/k with k/s. For the range of
k/s of the present investigation (0.4 < k/s < 3) calculated values of Ycp/k varied
from 0.667 to approximately 0.58. Since this variation in Ycp/k of 0.087 corresponds
to less than 3 percent of the total moment arm for the largest cylinder tested, an average
value of Ycp/ k of 0.62 was used in order to simplify the data-reduction procedure.
Assuming the center-of-pressure location based on the assumed pressure distributions
is within ±0.2k of the actual center-of-pressure location, the maximum error in the
cylinder drag-force measurement is approximately 5 percent and would occur for the
cylinders having k = 0.239 cm. The error for the k = 0.127 cm cylinders would be
approximately 21 percent.

As discussed in appendix B, the error in drag measurements for the 0.239-cm by
0.127-cm cylinder resulting from extraneous forces varied from a maximum of 3.5 percent
at Mm = 2.3 to 6 percent at Mo = 4.6.

DATA REDUCTION

Boundary-Layer Profile Data

From measured pitot-pressure surveys across the boundary layer, nondimension-
alized velocity distributions were calculated using the following equation:

+-1 M
u M 2

(1)
u M 1 + 1 2

2

where M was obtained from the pitot-probe pressure measurements and free-stream
static pressure (which was assumed to remain constant across the boundary layer) sub-
stituted into Rayleigh's pitot formula. The stagnation temperature was also assumed to
remain constant across the boundary layer.
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Boundary-layer displacement thicknesses were calculated from the following

equation:

- 1 M
* = 2 (2)

2

The boundary-layer thickness a was assumed to be the value of y at which the measured

velocity was 0.995 of the local velocity at the boundary-layer edge.

Cylinder Drag Force Measurements

As discussed previously, the variation of y cp/k with k/8 for the range of k/a

of the present investigation was found to be small relative to the moment arm from the

sensing-element hinge point to the calculated center-of-pressure location. A constant

value of ycp/k = 0.62 was therefore used to correct the balance output and was applied

in the form of the following equality:

0.792
(Drag force)Corrected = (Drag force)Measured ( 0. 792 (3)

The cylinder drag coefficients were then obtained from the following equation:

(Drag force)Corrected (4)
CD qA

where q, is free-stream dynamic pressure and A is the cylinder frontal area.

RESULTS AND DISCUSSION

Boundary- Layer Surveys

In order to insure that the boundary layer on the flat plate at the cylinder installation

location was a well-behaved, typical, laminar boundary layer, pitot-pressure surveys were

obtained on the flat-plate center line through the range of Reynolds numbers and Mach

numbers for which cylinder drag measurements were obtained. Presented in figure 2 is a

typical velocity profile computed from the pitot-pressure measurements, assuming constant

total temperature and constant static pressure through the boundary layer. The distortion
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of the profile due to the finite probe size is readily apparent near the plate surface. In

order to minimize this probe effect on the calculation of boundary-layer displacement

thickness to be presented subsequently, a linear variation in u/u, with y was assumed

from the flat-plate surface to the approximate location of the inflection point in the

measured profile. This assumption as shown in figure 2 results in a velocity distribution

as indicated by the flagged symbols that is in good agreement with the theoretical profile
of reference 7. A complete listing of measured velocity distributions through the boundary

layer corrected in the vicinity of the plate surface as discussed are tabulated in table I

for the range of test variables.

Experimental velocity profiles in which the distance off the plate surface has been

nondimensionalized by the boundary-layer displacement thickness are presented in

figure 3. These results are compared with the theoretical profiles of references 7 and 8.
The measured profiles are generally in good agreement with the theory of reference 7
through the range of test Mach numbers and Reynolds numbers. The theory of reference 8
overpredicts the velocities for a given value of y/S * with the extent of disagreement

increasing with increasing Mach number (figs. 3(a) to 3(d)). The good agreement of the

experimental profile with the more exact theory of reference 7 indicates that any effects

of leading-edge bluntness or finite aspect ratio on the flat-plate laminar boundary layer

at the location of the center cylinder installation are minimal.

Presented in figure 4 are comparisons of boundary-layer thicknesses determined
from experimental velocity profiles with theoretical values from references 7 and 8.
The experimental values and theoretical values from reference 7 correspond to values of

u = 0.995, whereas the results from reference 8 correspond to a value of u = 1.0.
ut ut
In general, good agreement is shown between experiment and the theory of reference 7,
whereas the theory of reference 8 underpredicts the experimental values. The extent of
this disagreement decreases with increasing Mach number.

Boundary-layer displacement thicknesses calculated from equation (2) using experi-
mental profiles are compared in figure 5 with theoretical values from references 7 and 8.
The experimental values of 8* were calculated with the assumption of the linear velocity
profiles in the near wall region, as discussed previously. The maximum percentage dif-
ference between the values obtained using this assumption and the values determined from
integrating the experimental profiles from the boundary-layer edge to the model wall was
approximately 3 percent. Fair agreement is shown in figure 5 between experiment and
both theories for the range of test variables. Values of 8* used for nondimensionalizing
cylinder height for subsequent cylinder-drag presentations were obtained from the solid
lines faired through the experimental data.
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Clean-Plate Skin-Friction Balance Measurements

Skin-friction coefficients calculated from the "clean-plate" skin-friction balance

measurements are presented in figure 6 for the range of test variables. Also presented

are values determined from the assumed linear velocity profiles in the wall region as well

as theoretical values from several theories. The values of cf determined from the skin-

friction balance measurements and velocity profiles are generally in good agreement

through the range of test variables. The theories of references 7, 8, and 9 are in good

agreement with the experimental data for the range of test conditions. The theory of

reference 10 is in good agreement with experiment at the lower Mach numbers but under-

predicts the experimental values at the higher Mach numbers.

Cylinder Drag Measurements

Drag coefficients determined from balance measurements for the isolated-cylinder

configurations are presented in figure 7. Results are shown in figure 7(a) for cylinders

having equal diameters and heights (k = w), whereas the results shown in figure 7(b)

are for a cylinder having a height approximately twice its diameter (k ; 2w). For all

the experimental data shown in figure 7, the values of 8* used to nondimensionalize k

on the abscissa scale were obtained from the data fairings presented in figure 5.

Experimental results are presented in figure 7(a) for cylinders of two different

diameters, 0.127 cm and 0.239 cm, as indicated by the flagged and unflagged symbols,

respectively. When the drag coefficients are plotted as a function of k/S* as shown, the

data fall into a narrow band for the test range of Mach number and cylinder diameter.

Also shown in figure 7 are approximate theoretical calculations for M. = 2.30

and 4.60 based on the following assumptions:

(1) The pressure distribution along the stagnation line of the segment of the cylinder

submerged within the laminar boundary layer corresponds to the local pitot pressure across

the boundary layer.

(2) The stagnation-line pressure on the segment of the cylinder external to the

boundary layer corresponds to the free-stream pitot pressure.

(3) The circumferential pressure-coefficient distribution around the cylinder varies

as

Cp = CPS L cos 2  (2700 < 6 < 90 ' )

where e is the angle between the unit normal vector on the cylinder surface and the

free-stream velocity vector.
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(4) The base pressure coefficients over the rear half of the cylinder (900 _ a < 270')
are assumed to be invariant with a and to vary linearly with y from a value of Cp,b = 0

1at the plate surface to a value of Cp,b = 2 at the boundary-layer edge. For values of

s < y < k, the base pressure coefficient is assumed to remain constant at Cp,b =
(ref. 11). Mm

Based on these assumptions, the following equations were derived to define the
cylinder drag coefficients:

CD=2 1 SL d k (1 k (5)
CD = d1[2 - 1 + L d (6)

3 q./p k pm 2 M2

CD 2 1 L) - 1 + SL d -1 1 >1 (6)
3 0 , k k m

Calculations from equations (5) and (6) are generally in good agreement with experimental
data for the cylinders having k - 2w (fig. 7(b)) but tend to overestimate the experimen-
tal drag coefficients for the cylinders with k = w (fig. 7(a)). The small effect of Mach
number on the variation of CD with k/s* shown by both sets of experimental data is
also indicated by the theoretical calculations. The reduction in drag coefficient with
decreasing k/w as indicated by the experimental data is believed to be associated with
the effects of k/w on the extent of boundary-layer separation ahead of the cylinder. Since
the effects of separation on the cylinder pressure distribution are unknown, no attempt
was made to account for these effects on the hypothetical cylinder pressure distribution.
With increasing k/w, however, the extent of separation ahead of the cylinder would be
expected to decrease and result in an improvement between experiment and theory, which
is the trend shown in figure 7.

Before results such as presented in figure 7 for isolated cylinders can be applied to
determine the drag of small cylinders used as boundary-layer trips, it is necessary to
establish the effect on the isolated-cylinder drag of adding additional cylinders in its
proximity. In order to determine this effect, additional cylinders were installed on the
flat-plate surface alined in a spanwise row on both sides of the instrumented cylinder and
perpendicular to the free-stream velocity vector. Drag measurements were obtained
through a range of cylinder spacings (fig. 1(b)).
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Presented in figure 8 are typical measured drag coefficients for a cylinder located

in a spanwise row of cylinders for Mach numbers of 2.30 and 3.95. The results are pre-

sented for the cylinders having k - 2w and for values of s/w ranging from 5 to O,

the latter case corresponding to the isolated cylinder. In general, increasing the distance

between cylinders results in an increase in cylinder drag coefficient. The similarity

between the trend of the variation of CD with k/s* for the row of cylinders and the

isolated cylinder suggests that a drag-coefficient parameter of the form CD/CDIC

where the two drag coefficients are evaluated at equal values of k/s*, would not be as

sensitive to k/5* as the individual values. This normalized drag-coefficient parameter

was determined for the complete range of cylinder and free-stream variables, and the

results are presented in figures 9 to 11. These results indicate that, for values of

k/8* _ 2.0, the normalized drag coefficients are essentially independent of k/s*. For

values of k/s* < 2.0, the normalized values generally approach a value of 1 which would

be expected since the interference created by adjacent cylinders would tend to be mini-

mized as k/s* approaches zero. The magnitude of the normalized drag coefficients for

k/s* > 2 tends to decrease with increasing Mach number and to increase with increasing

s/w. At the higher supersonic Mach numbers, tripping elements greater in height than

the boundary-layer thickness are required to move transition to the vicinity of the element

k k

(refs. 2 and 3). Since the value of - = 2 corresponds to values of - 1.0 at M = 2.3

and k 1.4 at M, = 4.60, normalized drag coefficientsfor cylinders used as boundary-

layer trips should be either near or in the range of k/s* where the values of CD/CDIC

are independent of k/s*.

The approximate level of the normalized drag coefficients for k/8* > 2 is cross-

plotted in figure 12 in order to illustrate the effects of cylinder size, spacing, and Mach

number better. As shown in figure 12, the data for all cylinders tested collapse into a

narrow band at each test Mach number and indicate a decrease in drag with decreasing s,

as previously noted. The effect of Mach number on the normalized drag coefficients, which

consists of a decrease in drag with an increase in Mach number, can be more clearly seen

in figure 12(b) where the curves representing experimental data fairings at each Mach

number from figure 12(a) are plotted relative to a common origin. In order to determine

the drag coefficient for a given cylinder configuration used as a boundary-layer trip,

therefore, the following simple procedure using the present results can be utilized pro-

vided (a) k 2, (b) 1 <k < 2, (c) 2.3 < Mt: 4.6, and (d) the cylinders are alined in a
6 w

spanwise row perpendicular to the free-stream velocity vector:
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(1) Evaluate CD/CDIC from figure 12(b) for given values of Mt and w/s

(2) Evaluate CDI C from figure 7 for given values of k/S* and k/w

CONCLUDING REMARKS

An experimental investigation has been conducted to define drag coefficients for
circular cylinders mounted on a flat-plate surface having a laminar boundary layer. The
cylinders were alined in a spanwise row perpendicular to the free-stream velocity vector.
The drag measurements were obtained through a range of

(a) Mach number from 2.3 to 4.6

(b) Spacing s between cylinders ranging from an isolated cylinder s = 0, where

w is the cylinder diameter) to spacings appropriate for boundary-layer trips

(c) Cylinder heights k ranging from approximately 0.4 to 3 times the undisturbed
laminar boundary-layer thickness

(d) Cylinder height-to-diameter ratios of 1.0 and approximately 2

The results of this investigation lead to the following concluding remarks:

1. The isolated-cylinder drag coefficient s = ) when plotted as a function of the

ratio of cylinder height to boundary-layer displacement thickness, k/5*, was found to be
only a weak function of free-stream Mach number and k/w. These results for the cylinder
with a height-to-diameter ratio of approximately 2 are in good agreement with results from
an approximate theoretical calculation based on a hypothetical cylinder pressure distribu-
tion described in the test.

2. Decreasing spacing between cylinders resulted in a decrease in cylinder drag
coefficients.

3. Increasing k/6* resulted in an increase in cylinder drag coefficient; however,
if the cylinder drag coefficients for the row of cylinders are normalized by the isolated-
cylinder values, the normalized parameter is essentially invariant with k for k > 2.
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4. A simplified procedure is outlined in the text for obtaining cylinder drag coeffi-

cients using the results of this investigation.

5. Results obtained from impact-pressure surveys through the laminar boundary

layer on the center line of the flat-plate surface were in good agreement with the theory

of NASA TR R-368.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., September 26, 1973.

13



APPENDIX A

ESTIMATE OF CENTER-OF-PRESSURE LOCATION ON A CIRCULAR

CYLINDER ATTACHED TO A FLAT PLATE HAVING

A LAMINAR BOUNDARY LAYER

Since the skin-friction balance used to measure cylinder drag in the present investi-
gation is essentially a moment-measuring instrument, it is necessary to define the location
at which the resultant drag force acts on the cylinder so that the correct moment arm can
be determined. If the pressure distribution over the cylinder can be defined, the center-
of-pressure location can be obtained from the following equation:

(Moment)y 0  (Al)

cp Drag force

Using the following sketch illustrating the cylinder orientation and incremental areas,

V.

dSxy "
dS

jLi

/

Segment of flat-
plate surface

Sketch Al

the moment about the cylinder base (y = 0) and the cylinder drag force can be expressed
as integrals of the local surface pressure acting on the surface-area projection in the
x,y planes as follows:
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APPENDIX A - Continued

(Moment)y=0 =f py dSxy (A2)

S

Drag force = ff p dSxy (A3)

S

At present, no exact method exists for predicting the pressure distribution over a

cylinder protruding through a laminar boundary layer; therefore, in order to evaluate the

integrals of equations (A2) and (A3), the following hypothetical pressure distribution was

assumed:

(1) The pressure distribution along the cylinder stagnation line varies as shown in

the following sketch:

PSL

Pt, 2 -

Poo

0 k

Sketch A2

resulting in the following equations for cases where k > :

p SL ) y (y <) (A4)

PSL = Pt,2 (Y > ) (A5)

(2) For 2700 - - 900, the pressure coefficient varies as cos 2 and, as a result,

the following equations are obtained:

p = p + (Pt,2 - P) Y cos 2 08 y ) (A6)

P = P + (Pt,2 - p) cos 2  (y > ) (A7)
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APPENDIX A - Continued

(3) The base pressure coefficients over the rear half of the cylinder (90' - 8 _ 2700)
are assumed to be invariant with 8 and to vary linearly with y from a value of Cp,b = 0
at the plate surface to a value of Cp, b = - at the boundary-layer edge. For values of

MO
a < y - k, the base pressure coefficient is assumed to remain constant at a value

1
Cp,b = -

It should be noted that assumptions 2 and 3 are the same assumptions used in the
main text for the circumferential and base pressure distributions in the derivation of
equations (5) and (6). The assumption used in this appendix for the stagnation line pressure
(0 5 y < 8), however, is a more simplified approximation than that used in the derivation
of equations (5) and (6). Since the linear variation in pressure assumed here results in a
closed-form solution for ycp and since the distance from the plate surface to ycp is
only a small fraction of the total moment arm from the balance moment center, it is
believed that this more simplified approach is justified for the purpose of calculating the
center-of-pressure location.

Substituting equations (A4) through (A7) into the integral equations for moment and
drag force and expressing the incremental area in polar coordinates results in the following
set of equations for k - 8:

8 n/2
(Moment)y =2 f f [P + (pt,2 - Pm) Y cos 2 ] yr cos 0 da dy

k 1/2

+2 f f +Pt,2-Pm)cos2] yrcos dody

2 2 2r2 q, q_
- prk 2 - r82p + r(k + 5) (k- b) (A8)

163 M
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APPENDIX A - Concluded

7 T/2
Drag force =2 f f [p + (Pt,2 -o) cos281 r cos 6 de dy

k 7/2

+2f [p + (pt,2 -) cos 2 ] r cos a de dy

qo qo (A9)
- rs - 2r k p + 2rk (A9)

2 M 2
Mm M

Equations (A8) and (A9) can be integrated to obtain the following equations:

(Moment)y=0 = r 2 (P - Pt,2) - r k 2 ( - Pt,2 )  (A10)
y= 9 3

Drag force =- ar (pc - Pt,2 ) - rk(p -t,2 )  (All)
3 3

Substituting equations (A10) and (All) into equation (Al) gives the following equation

for the center-of-pressure location:

1 k2

cp 3 \ (k _ s) (A12)

k k -2

For cylinder heights less than the boundary-layer thickness, it can be readily shown

that the center-of-pressure location for the hypothetical pressure distribution is

Ycp 2 (k 8) (A13)

k 3

The variation of y cp/k with k/8 is shown in figure 13 for the approximate k/a

range of the present investigation.
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APPENDIX B

CANTILEVERED- CYLINDER MEASUREMENTS

In order to assess the error in cylinder drag measurements associated with extrane-
ous forces resulting from skin-friction drag and pressure gradients acting on the balance
sensing element, a cantilevered-cylinder arrangement (see fig. 1(b)) was tested where
only the extraneous forces were applied to the balance. Results obtained from these meas-
urements are presented in figure 14 and are compared with cylinder drag measurements
obtained for the 0.239 cm by 0.127 cm cylinder. Through the range of Mach number
(figs. 14(a) to 14(d)), the extraneous force measurements obtained using the cantilevered
cylinder are over an order of magnitude less than the total drag measurements obtained
with the cylinder attached to the sensing element. The maximum percentage error in the
total drag measurement resulting from these extraneous forces as determined from these
results varies from approximately 3 percent at M. = 2.30 to 6 percent at Mo = 4.60.

At the two lower test Mach numbers, an anomalous behavior occurred in the varia-
tion of the extraneous forces with Reynolds number at the higher Reynolds numbers. This
anomaly consists of a decrease in the measured extraneous forces with an increase in
Reynold number; for example, at Mo = 2.30 (fig. 14(a)), increasing R from 0.5 x 106 to
0.67 x 106 results in a force reduction from approximately 0.0013 N to a value that was
actually negative. Since the balance was not calibrated for negative forces and, also,
since a negative force cannot be shown on the log coordinate of figure 14, this result is
not presented. At Mm = 2.90 (fig. 14(b)), increasing R from 0.77 x 106 to 0.83 x 106
resulted in an approximate 2 5-percent force reduction. This anomaly was not observed
at the two higher Mach numbers.

This anomalous behavior in the extraneous forces is believed to result from the
location of boundary-layer transition, induced by the cylinder, moving forward to the
immediate proximity or possibly even ahead of the cylinder and influencing the forced
separation in this region. This hypothesis is substantiated by voltage fluctuation measure-
ments obtained (although not presented herein) using a thin-film heat-flux gage that was
located immediately upstream of a 0.239 cm by 0.127 cm cylinder mounted on a dummy
balance and located at the same position on the flat plate as the cylinders used for the
drag measurements. The dummy balance was machined to house the heat-flux gage so
that the thin film was flush with the plate surface. Additional heat-flux gages were located
on the plate center line downstream of the cylinder to establish the rms voltage fluctuation
level typical of a turbulent boundary layer for these test conditions. Measurements were
obtained only at a Mach number of 2.3. For Reynolds numbers 5 0.47 x 106 the rms
voltage fluctuations from the gage ahead of the cylinder were approximately an order of
magnitude less than values obtained downstream of the cylinder where the boundary layer

18



APPENDIX B - Concluded

was turbulent. At R , 0.5 x 106 the rms voltage fluctuation measurements ahead of the

cylinder abruptly increased to values even greater than those obtained downstream of the

cylinder; however, with a further increase in Reynolds number the fluctuation measure-

ments rapidly approached the downstream values. The trend of the variation of the rms

voltage fluctuations with Reynolds number ahead of the cylinder is typical of the fluctua-

tion associated with a boundary layer going from laminar to transitional and, finally, to

turbulent conditions as reported in reference 12.
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TABLE I.- TABULATED RESULTS FROM PITOT SURVEYS

(a) M = 2.30

R= 0.20 x 106 R 0.33x 106 R =0.50 x 10 6  R0.67x 106 R= 1.00x 106

,* = 0.0940 cm 6* = 0.0752 cm 8* = 0.0615 cm 8* = 0.0526 cm *=0.0457cm

y/s* u/u y/* u/ y/* u/u y/* U/Ur Y/8 u/u y/ * u/uo

0.095 0.0738 0.118 0.0906 0.145 0.1192 0.169 0.1335 0.194 0.1607

0.230 0.1792 0.287 0.2201 0.351 0.2896 0.411 0.3241 0.472 0.3902

0.365 0.2846 0.456 0.3495 0.558 0.4599 0.652 0.5147 0.750 0.6197

0.419 0.3268 0.524 0.4013 0.640 0.5281 0.749 0.5910 0.861 0.6692

0.473 0.3690 0.591 0.4531 0.723 0.5962 0.845 0.6494 0.972 0.7254

0.527 0.4111 0.659 0.5048 0.806 0.6426 0.942 0.7005 1.083 0.7861

0.581 0.4533 0.726 0.5566 0.888 0.6833 1.039 0.7621 1.194 0.8363

0.635 0.4955 0.794 0.6084 0.971 0.7287 1.135 0.8054 1.306 0.8793

0.689 0.5376 0.861 0.6486 1.054 0.7751 1.232 0.8505 1.417 0.9148

0.743 0.5798 0.929 0.6894 1.136 0.8194 1.329 0.8889 1.528 0.9435

0.797 0.6051 0.997 0.7280 1.219 0.8520 1.425 0.9162 1.639 0.9589

0.851 0.6374 1.064 0.7670 1.302 0.8804 1.522 0.9412 1.750 0.9734

0.905 0.6630 1.132 0.7991 1.384 0.9091 1.618 0.9569 1.861 0.9823

0.959 0.6933 1.199 0.8360 1.467 0.9301 1.715 0.9719 1.972 0.9874

1.014 0.7273 1.267 0.8609 1.550 0.9501 1.812 0.9808 2.083 0.9904

1.068 0.7566 1.334 0.8887 1.632 0.9620 1.908 0.9868 2.194 0..9927

1.122 0.7868 1.402 0.9073 1.715 0.9723 2.005 0.9905

1.176 0.8149 1.470 0.9280 1.798 0.9787 2.101 0.9927

1.230 0.8381 1.537 0.9438 1.880 0.9864

1.284 0.8637 1.605 0.9567 1.963 0.9893

1.338 0.8822 1.672 0.9666 2.045 0.9916

1.392 0.9010 1.740 0.9750 2.128 0.9937

1.446 0.9173 1.807 0.9824

1.500 0.9335 1.875 0.9863

1.554 0.9468 1.943 0.9896

1.608 0.9569 2.010 0.9921

1.662 0.9660 2.078 0.9937

1.716 0.9729

1.770 0.9790

1.824 0.9836

1.878 0.9871

1.932 0.9900

1.986 0.9921

2.041 0.9937
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TABLE I.- TABULATED RESULTS FROM PITOT SURVEYS - Continued

(b) M = 2.90

R =0.20 x 106 R =0.33 x 106 R = 0.67 x 106 R= 1.00 x 106 R= 1.33 x 1068* = 0.1151 cm 6* = 0.0902 cm s* = 0.0681 cm s* = 0.0551 cm 5* = 0.0516 cm

y/8* u/un Y/ * U/Um Y/* u/u y/s* u/u, y/s* u/um
0.077 0.0638 0.099 0.0816 0.131 0.1072 0.161 0.1360 0.172 0.1518
0.188 0.1549 0.239 0.1983 0.317 0.2604 0.392 0.3302 0.419 0.3686
0.298 0.2461 0.380 0.3149 0.504 0.4136 0.622 0.5245 0.665 0.5855
0.342 0.2825 0.437 0.3616 0.578 0.4749 0.714 0.5824 0.764 0.6550uv 0.0 A v U. 08 0.653038a % .319 493 0.4082 0.653 0.5362 0.806 0.6416 0.862 0.7206
0.430 0.3554 0.549 0.4549 0.728 0.5844 0.899 0.7017 0.961 0.7802
0.475 0.3919 0.606 0.5015 0.802 0.6363 0.991 0.7634 1.059 0.8417
0.519 0.4283 0.662 0.5482 0.877 0.6831 1.083 0.8136 1.158 0.8839
0.563 0.4648 0.718 0.5826 0.951 0.7393 1.175 0.8647 1.256 0.9209
0.607 0.5012 0.775 0.6238 1.026 0.7855 1.267 0.9029 1.355 0.9475
0.651 0.5377 0.831 0.6604 1.101 0.8259 1.359 0.9305 1.453 0.9694
0.695 0.5714 0.887 0.6977 1.175 0.8681 1.452 0.9555 1.552 0.9799
0.740 0.6040 0.944 0.7385 1.250 0.8972 1.544 0.9709 1.650 0.9896
0.784 0.6268 1.000 0.7730 1.325 0.9240 1.636 0.9839 1.749 0.9936
0.828 0.6588 1.056 0.8040 1.399 0.9431 1.728 0.9906 1.847 0.9962
0.872 0.6917 1.113 0.8339 1.474 0.9608 1.820 0.9952
0.916 0.7204 1.169 0.8591 1.549 0.9747
0.960 0.7499 1.225 0.8824 1.623 0.9833
1.004 0.7763 1.282 0.9030 1.698 0.9897
1.049 0.8012 1.338 0.9237 1.772 0.9928
1.093 0.8272 1.394 0.9392 1.847 0.9953

1.137 0.8510 1.451 0.9537

1.181 0.8711 1.507 0.9650

1.269 0.9066 1.620 0.9820
1.313 0.9213 1.676 0.9872
1.358 0.9354 1.732 0.9914
1.402 0.9479 1.789 0.9942
1.446 0.9572 1.845 0.9963

1.490 0.9650

1.534 0.9724

1.548 0.9788
1.623 0.9846

1.667 0.9882

1.711 0.9912

1.755 0.9940

1.799 0.9959
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TABLE I. - TABULATED RESULTS FROM PITOT SURVEYS - Continued

(c) M- = 3.95

R= 0.27x 106 R = 0.50 x 106 R = 0.67x 106 R = 1.00 x 106

8* = 0.1585 cm 6* = 0.1234 cm s* = 0.1064 cm s* = 0.0869 cm

y/8* u/un Y/ * u/u y/Y6* u/u Y/8 * u/u

0.056 0.0479 0.072 0.0635 0.084 0.0739 0.102 0.0908

0.136 0.1164 0.175 0.1541 0.203 0.1795 0.249 0.2205

0.216 0.1849 0.278 0.2448 0.322 0.2851 0.395 0.3502

0.280 0.2397 0.360 0.3173 0.370 0.3273 0.453 0.4020

0.345 0.2945 0.442 0.3898 0.418 0.3695 0.512 0.4539

0.409 0.3493 0.525 0.4623 0.465 0.4117 0.570 0.5058

0.473 0.4040 0.566 0.4986 0.513 0.4540 0.629 0.5482

0.537 0.4588 0.607 0.5275 0.561 0.4962 0.687 0.5925

0.601 0.5136 0.648 0.5558 0.609 0.5312 0.746 0.6388

0.665 0.5684 0.689 0.5911 0.656 0.5676 0.804 0.6870

0.729 0.6193 0.730 0.6194 0.704 0.6043 0.863 0.7307

0.793 0.6707 0.772 0.6521 0.752 0.6418 0.921 0.7727

0.857 0.7172 0.813 0.6839 0.800 0.6826 0.980 0.8104

0.921 0.7611 0.854 0.7170 0.847 0.7207 1.038 0.8454

0.986 0.8031 0.895 0.7467 0.895 0.7544 1.096 0.8801

1.050 0.8419 0.936 0.7773 0.943 0.7844 1.155 0.9095

1.114 0.8780 0.977 0.8035 0.990 0.8167 1.213 0.9354

1.178 0.9100 1.019 0.8282 1.038 0.8441 1.272 0.9551

1.242 0.9386 1.060 0.8546 1.086 0.8741 1.330 0.9706

1.306 0.9620 1.101 0.8790 1.134 0.8984 1.389 0.9825

1.370 0.9773 1.142 0.8992 1.181 0.9215 1.447 0.9902

1.434 0.9882 1.183 0.9199 1.229 0.9419 1.505 0.9948

1.498 0.9941 1.224 0.9377 1.277 0.9578 1.564 0.9969

1.563 0.9978 1.265 0.9524 1.325 0.9708

1.307 0.9672 1.372 0.9811

1.348 0.9779 1.420 0.9881

1.389 0.9837 1.468 0.9924

1.430 0.9900 1.516 0.9952

1.471 0.9934

1.512 0.9959
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TABLE I.- TABULATED RESULTS FROM PITOT SURVEYS - Concluded

(d) M = 4.60

R=0.27x10 6 R=0.33x10 6 R=0.50x10 6 R=0.67x10 6 R=1.00x106 R=1.33x10 6

* = 0.2139 cm *= 0.1935 cm *= 0.1613 cm 6*=0.1422cm *=0.1181cm 8* =0.1044 cm

y/S* u/u, y/8* u/uo y/5* u/u.o y/s* u/un y/s* u/u y/s* u/u

0.042 0.0373 0.046 0.0410 0.055 0.0485 0.063 0.0554 0.075 0.0689 0.085 0.0778
0.101 0.0907 0.112 0.0996 0.134 0.1178 0.152 0.1347 0.183 0.1674 0.207 0.1889
0.160 0.1441 0.177 0.1583 0.213 0.1871 0.241 0.2139 0.290 0.2659 0.328 0.3000
0.208 0.1867 0.230 0.2052 0.276 0.2425 0.313 0.2772 0.376 0.3447 0.377 0.3445
0.255 0.2294 0.282 0.2520 0.339 0.2980 0.384 0.3406 0.462 0.4235 0.426 0.3889
0.303 0.2721 0.335 0.2989 0.402 0.3534 0.455 0.4040 0.548 0.5023 0.474 0.4334
0.350 0.3148 0.387 0.3458 0.465 0.4088 0.527 0.4673 0.591 0.5417 0.523 0.4778
0.398 0.3575 0.440 0.3927 0.528 0.4643 0.598 0.5307 0.634 0.5836 0.572 0.5223
0.445 0.4002 0.492 0.4396 0.591 0.5197 0.634 0.5624 0.677 0.6231 0.620 0.5621
0.493 0.4428 0.545 0.4865 0.654 0.5795 0.670 0.5986 0.720 0.6597 0.669 0.6013
0.540 0.4855 0.597 0.5334 0.685 0.6024 0.705 0.6291 0.763 0.6962 0.718 0.6422
0.588 0.5282 0.650 0.5740 0.717 0.6293 0.741 0.6607 0.806 0.7305 0.766 0.6864
0.635 0.5634 0.702 0.6184 0.748 0.6534 0.777 0.6925 0.849 0.7626 0.815 0.7272
0.683 0.6043 0.755 0.6673 0.780 0.6848 0.813 0.7191 0.892 0.7950 0.864 0.7662
0.730 0.6437 0.807 0.7066 0.811 0.7118 0.848 0.7472 0.935 0.8246 0.912 0.7972
0.778 0.6792 0.860 0.7469 0.843 0.7336 0.884 0.7736 0.978 0.8515 0.961 0.8349
0.825 0.7172 0.912 0.7858 0.874 0.7577 0.920 0.8001 1.022 0.8789 1.010 0.8680
0.873 0.7549 0.965 0.8236 0.906 0.7816 0.955 0.8246 1.065 0.9054 1.058 0.8912
0.920 0.7907 1.017 0.8594 0.937 0.8037 0.991 0.8507 1.108 0.9273 1.107 0.9197
0.968 0.8257 1.070 0.8937 0.969 0.8260 1.027 0.8738 1.151 0.9447 1.156 0.9409
1.015 0.8584 1.122 0.9223 1.000 0.8498 1.063 0.8962 1.194 0.9616 1.204 0.9577
1.063 0.8901 1.175 0.9474 1.031 0.8712 1.098 0.9154 1.237 0.9751 1.253 0.9724
1.110 0.9191 1.227 0.9641 1.063 0.8880 1.134 0.9335 1.280 0.9839 1.302 0.9828
1.158 0.9421 1.280 0.9785 1.094 0.9072 1.170 0.9489 1.323 0.9901 1.350 0.9895
1.205 0.9590 1.332 0.9874 1.126 0.9244 1.205 0.9624 1.366 0.9933 1.399 0.9931
1.253 0.9724 1.385 0.9926 1.157 0.9397 1.241 0.9731 1.409 0.9961 1.448 0.9952
1.300 0.9826 1.437 0.9962 1.189 0.9540 1.277 0.9815
1.348 0.9896 1.220 0.9646 1.313 0.9875
1.395 0.9936 1.252 0.9742 1.348 0.9915
1.443 0.9962 1.283 0.9809 1.384 0.9942

1.315 0.9862 1.420 0.9958
1.346 0.9899

1.378 0.9929

1.409 0.9948

1.441 0.9962
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(a) Flat-plate model. (All dimensions are in centimeters.)

Figure 1.- Model and apparatus.
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(b) Cylinder models.

Figure 1.- Continued.
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Figure 1.- Concluded.
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Figure 2.- Typical experimental velocity profile. M, = 3.95; R = 0.50 x 106 .
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(a) MCo = 2.30.

Figure 3.- Comparison of experimental and theoretical velocity profiles.

(Flagged symbols denote linear variation of u/u. with y/8 * assumed
near wall region.)
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(b) MCO = 2.90.

Figure 3.- Continued.
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Figure 3.- Continued.
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Figure 3.- Concluded.
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Figure 4.- Comparison of experimental and theoretical boundary-layer thicknesses.
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Figure 11.- Effect of cylinder spacing on normalized cylinder
drag coefficients. k = 0.127 cm = w.
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Figure 12.- Effect of cylinder size and Mach number on
normalized drag coefficients. k/s* > 2.
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Equation (A12) for 1; equation (A13) for k < 1.
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Figure 14.- Balance measurements using cantilevered cylinder installation
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